Rupert Sternath of Stern Consult adds to the TunnelTalk Feedback discussion about the failure of the segmental lining behind the TBM drive through the ground freezing support for the Rastatt rail tunnel drive in Germany to enquire after the process for filling the annual gap around the segmental lining to avoid failure of the integrity of the segmental lining ring.
David Caiden of Arup questions if failure of the lining is truly failure of the lining as designed and under extreme conditions of running or flowing ground, recalling a segmentally lined TBM tunnel collapse on the Hong Kong Metro in 1983.
Nick Shirlaw of Golder Associates responds to the TunnelTalk report of the Rastatt TBM drive collapse and comments particularly on the failure of the segmental lining of the drive, recalling three other incidences of segmental lining failure that resulted in complete, and in one case fatal, tunnel collapse; in Hull, UK (1999); Cairo, Egypt (2009) and in Okayama, Japan (2012) – and suggests that, while segmental lining failures behind soft ground TBM drives “are very rare, the consequences are so severe that we, as an industry, need to make sure that the relevant lessons are learned and the likelihood of another incident reduced.”
See the full Feedback contribution at the bottom of this article page and on the Feedback page and for further discussion about the failure of the Rastatt tunnel failure and its aftermath, see the Discussion Forum article.
In addition to further Feedback comments and thoughts on the TunnelTalk Feedback page, further comments and thoughts are added to this Discussion Forum article about the collapse of the Rastatt TBM rail tunnel in Germany and failure of its segmental lining from the TunnelTalk social media accounts.
Tim Hyett, MSc Ceng Cgeol FGS MCIOB, writes in the TunnelTalk LinkedIn group:
“Good article highlighting the major risks of shallow cover tunnelling using pressure balance TBMs, not helped, no doubt, by the far too frequent trend of designers to focus on transverse loading of the ring only, and ignoring minor longitudinal deformation of the tube lining behind the TBM, and the practice (originally imported from Europe) of removing/recycling segment bolts. Taking out tunnel segment bolts in anything other than the most stable of ground is something that would have been thought madness 20 years ago, yet seems common-place today. The investigation into the tunnel collapse in Hull in 1999 wasn't anywhere near conclusive, but ask any of the miners who were frantically trying to reinsert the bolts and they will tell you what would have prevented it.”
Auke Lubach writes: “Interesting article and problem to analyse. Shooting from the hip, what is the possible effect of stray current from the railroad on ground freezing?”
Wasim Ashraf writes: “I would love to see the cost comparison between mix-in place and/or grouting vs ground freeze technique used for this 200m given the soil strata shown in the image of the core samples in this article.”
Another reader queries the immediate response to backfill TBM tunnel drive failures with concrete and burying the TBM and its back-up in the process, suggesting that there must be a better method for stabilizing the failure zone - which in the Rastatt case was 40m behind the TBM shield bulkhead, although not clear of the trailing backup gantries - and avoid the destruction of the TBM in the process.
Although thankfully rare, the incidence of tunnel excavation failure is a reflection on the competence of the global industry as a whole. Tunnelling is one of those few industries that is truly global with the expertise and best practice knowing no political or geographical boundaries and for all the hundreds and thousands of unsung successes, it is the rare failures that shape the industry for the future. They are a reminder also for anyone considering an operation in underground excavation and tunneling it is not as simple or as easy as might be perceived. When things go wrong, the consequences can be catastrophic not only to the project itself and perhaps fatal to the workers, the impact on the environment and affected involved infrastructure can be devastating. Pushing the boundaries is a must for taking industry forward but managing the risks and learning from the causes and consequences of any failure is equally, if not more important.
The failure of the Rastatt TBM rail tunnel in Germany as reported in TunnelTalk last week (21 August 2017) has prompted a series of communications from different quarters of the industry and representing the various aspects of the event.
Details of the incident, as far as can be reported, are explained in the Ground freezing TBM drive collapse in Germany article and in short, the lead heading of a 4km long twin tube TBM rail tunnel built to bypass the city of Rastatt, while passing a reported 4m under the main twin track railway corridor between Germany and Switzerland and with the support of horizontal ground freezing through waterbearing sands and gravels, failed with failure of the ground freezing regime and loss of integrity of the segmental lining, allowing ground loss under the rail tracks into the new tunnel bore beneath.
This scenario raises a multitude of queries and questions for confirmation, investigation and speculation and the parties involved and most crucially Deutschebahn, the owner of both the rail operation on the surface and the new rail tunnel being constructed beneath, are now investigating.
In feedback to our reporting, it was noted by readers that, initially, news was slow in reaching a wider audience. Disruption to the hundreds of passenger and freight train traffic that uses the mail rail route per day were the general media headlines until the cause for the complete closure of the line was reported more specifically a week after the event.
It was a TunnelTalk reader in the insurance industry that notified us of the situation and investigating details for our report was hampered by both the language barrier and the understandable reluctance to answer any probing questions that might compromise investigations, but that has not closed down speculation and queries within the industry and particularly as the most probable cause of the collapse reported in the German media has been a failure of the ground freezing support caused by high summer time temperature at the time and accompanied by heavy local rainfall.
Immediate responses the to TunnelTalk article came from around the world and comprised private emails to the Editor and Feedback for publication.
In the published Letter to the Editor, Nick Shirlaw of Golder Associates queries the failure of the segmental lining and highlights other incidences of segmental lining failures that could be included and reviewed again in light of this current segmental lining failure at Rastatt.
Other emails received offered various comment and queried for confirmation various aspects of the situation, including:
Adding to these thoughts, queries and comments, TunneTalk compiled a list of questions as requested when contacting the Media Relations spokesperson in DB managing media enquiries and submitted the following for consideration and possible reply.
If that is the case, what was the junction and overlap of the freeze installations at this critical mid-point? It would have been difficult to check this as the pipes were horizontal and so deviation of the pipes after 100m of HDD drilling could not have been guaranteed and there would have been no way of confirming the freeze from the surface at that point as that would have required working in or close to the trackway. Supposition of the details, but a fact is that the freeze evidently failed at that critical mid-point junction and under the tracks.
Can a freeze operation so closely under a vital set of heavy weight, high trafficked train tracks be a good idea when a secure freeze is vital, but so too is not causing any serious ground heave under the tracks. What was the effect of the vibration from the heavy and regular trains on both the freeze and the integrity of the segmental lining and TBM operation under such a shallow cover?
Added to these technical thoughts and questions, there are an additional set of of questions to query the method of contract procurement, the risk allocation regime in that contract, and the approval process for accepting the extension of the TBM alternative over the original open-face operation under the tracks.
All of these, and many more queries and questions and points for clarification surround the tunnel failure at Rastatt and the following set of reference articles from the TunnelTalk Archive provide additional reading on various points at the centre of this discussion.
Use the Search window facility at the bottom of this article page to find keyword reference articles in the extensive and free-to-access archive of more than 2,000 articles published by TunnelTalk since its launch in 2008.
Rastatt TBM drive collapse and failure of its segmental linings
Feedback from: Rupert Sternath
One can see out of the available publications that the segments of the lining have dislocated some 40m behind the TBM. This is an indication that the ring gap has not been filled properly. As this happened to an experienced contractor it may be the case that the grouting operation together with the TBM drive through a frozen soil includes some particular problems.
Mining through an ice body has the characteristic of a hard rock drive, which requires some over excavation to enable shield steering.
Most shielded TBMs use grout lines through the shield tail to fill the annual gap immediately behind the tail seal. Under hard rock conditions the mortar tends - due to the over excavation - to flow around the body of the TBM and to the front and into the working chamber and so leaving voids outside the segmental lining. These voids have to be filled by a secondary grouting operation through the segments as soon as possible from the top of one of the trailing gantries.
In case of a frozen soil outside the gap however, it may happen that the voids are being filled by groundwater, which would also freeze, and as heat is present inside the tunnel during the mining process, the ice in the gap may melt leaving the segments unsupported. In this case filling of the gap by blowing pea gravel through the segments combined with a cement grouting operation may be a better option in my view.
Anyway, the tunneling world is keen to see the outcome of the following investigations and very interested on further reports in TunnelTalk about them!
Regards,
Rupert Sternath
Stern Consult
Holzhamer Bogen 15 83624 Otterfing
Rastatt TBM drive collapse and failure of its segmental linings
Feedback from: David Caiden
In the discussion about the Rastatt collapse incident, mention has been made to some classic tunnel collapses and refers to precast concrete (PCC) segmental lining failures. But is it truly a “failure” in the usual sense of the word if the lining collapses under a load for which it was never designed nor intended?
Consider this: A car gets flattened by a meteorite - would we say the body shell had “failed”? I doubt it. We would say it was “flattened by a meteorite”.
What I am talking about here is running or flowing ground and I am reminded of the collapse in Hennessy Road during the Hong Kong Island Line construction on 1st January 1983. The hole in the rock face through which the CDG flowed under water pressure was no bigger than a fist when the flow started. But the flowing ground opened it up so much with abrading material that we ended up with a full size street lamp within the debris in the tunnel.
My point is that flowing ground is an immensely destructive force similar to rushing floodwater. PCC linings are designed for static ground forces in the permanent cases and handling and building forces for the construction stages. They are not designed to withstand immense dynamic and changeable flowing ground forces with a battering of cobbles and other debris. The approach we take to overcome this disregarded loading case is to take measures to prevent ground flows. Naturally when these measures are unsuccessful the PCC ring will not hold up.
Regards,
David Caiden
Arup
|
|