DISCUSSION FORUM No-dig carbon reduction advantage Jun 2011
Pipe Jacking Association News Release
Pipe jacking Logo
The non-disruptive advantages of the microtunnelling and pipe jacking alternatives to the trenched installation of utility pipelines has long been appreciated and promoted. Today there is the additional consideration of sustainability and reduction of the carbon footprint when selecting methods of infrastructure construction.
In this regard too, the microtunnelling and pipe jacking alternatives have the advantage. According to early appraisals, savings of up to 95% of carbon emissions are achievable by using no-dig microtunnelling and pipe jacking methods.
TRL Logo
To help quantify the potential advantages, the Pipe Jacking Association (PJA) has commissioned TRL, the UK's leading independent centre for international transport research and consultancy, to develop a web-based greenhouse gas emissions (GHG) calculator that will enable designers and utility companies make early assessments of the carbon savings offered by the no-dig methods.
An initial scoping study will assess the processes that consume energy and contribute to emissions, including vehicle movements to and from site for equipment, construction materials and spoil. It will analyse site processes and operations and include clear process mapping and protocol development to facilitate data collection on the separate installation techniques. The data gathered will be analysed and translated into a web-based tool that can 'carbon footprint' utility installations at the design stage and make a comparison between open-cut and no-dig methods. It is anticipated that as a project progresses the tool will enable updated and accurate emissions data to be calculated though the input of key project parameters.

Table 1. Comparing the environmental aspects of open trench and pipe jacked sewer construction at two typical sewer diameters

600mm ID pipeline 4m deep, 100m length 1200mm ID pipeline 4m deep, 100m length
Aspect Open trench Trenchless Open trench Trenchless
Excavated width 1400mm (trench width) 760mm (OD of jacking pipe) 2350mm (trench width) 1450mm (OD of jacking pipe)
Reinstatement width 1700mm None 2650mm None
Excavated volume per metre of pipeline 6.1m3 0.5m3 10.28m3 1.65m3
Imported stone fill and coated stone per metre of pipeline 11.9 tonnes None 18.27 tonnes None
Number of 20 tonne lorry loads per 100m pipeline (muck away and imported stone) 136 8 220 21
Programme development will include reference to the Publicly Available Specification (PAS) 2050 -Assessing the Life Cycle Greenhouse Gas Emissions of Goods and Services, and the Inventory of Carbon and Energy (ICE) compiled by the University of Bath which are used extensively to assess the GHG impact of many materials and processes used throughout the construction industry. The calculator will be a significant enhancement on many calculators available in that the impact of traffic disruption and delays will also be taken into account.
Both TRL and the PJA would like to hear from any stakeholders who are interested in the project, particularly client organisations and those working on related initiatives, who might have useful data to contribute. Contact Matt Wayman at mwayman@trl.co.ukor by telephone on +44 (0) 1344 770472.

Add your comment

Thank you for taking the time to share your thoughts and comments. You share in the wider tunnelling community, so please keep your comments smart and civil. Don't attack other readers personally, and keep your language professional.
In case of an error submitting Feedback, copy and send the text to Feedback@TunnelTalk.com
Name :


Date :

Email :


Phone No :

   Security Image Refresh
Enter the security code :
No spaces, case-sensitive