Large components for the first of two Herrenknecht TBMs have arrived on site at the Snowy 2.0 hydro project in Australia, for construction by JV Future Generation, comprising Webuild (formerly Salini Impregilo), Lane Construction and Clough.
Measuring 137m in length and 11m in diameter, the TBM will operate at a descent of 9% to excavate a 2,660m tunnel and a cavern to house the power plant.
Loaded on long trailers hauled by heavy trucks from Port Kembla, the first shipments of the TBM components – the front shield, gear ring probe drill and main seal – have passed through the town of Cooma in the Snowy Mountains to arrive at Lobs Hole, where excavation of the main access tunnel is to begin. The main drive, the heaviest component at 174 tonne, has also been delivered to the site.
Webuild will excavate the waterways, access tunnels and other supporting infrastructure with the other two TBMs, which are due to arrive on site in the coming months. It will build access roads and camp accommodation for workers and has already excavated the main access tunnel portal in the Snowy Mountains. In Cooma, it is building a pre-cast factory and bathing plant to produce 130,500 concrete segments that will line the 40km of tunnels to be excavated.
More than 500 people and 100 local businesses are currently involved in the project, with about 4,000 jobs expected to be created during the life of the project. There is also the potential for many more jobs to be created in the region through supply chains and support services.
Set in the Snowy Mountains, Snowy 2.0 will provide an additional 2,000MW of fast-start, dispatchable energy and provide 350,000MW hours of large-scale storage. It will reduce volatility in the market, support reliability and bring down power prices for families and businesses. The Snowy Scheme already generates about a third of the renewable energy in the national electricity market in Australia.The project will expand the Snowy Hydro Limited network of hydro power stations and support the transition to a low-carbon emissions future.
Renewable energy is part of the Webuild focus on helping clients achieve sustainable development goals set by the United Nations. More than half of the new orders it acquired in 2019 were related to hydro power. As the first source of renewable energy in the world, hydro power is responsible for 71% of all the energy produced by renewable sources.
Construction of the Snowy 2.0 hydroelectric scheme in the Snowy Mountains of New South Wales, Australia, has started with new innovative design alternatives offered by the engaged Future Generation consortium for the 2GW project. With a high head differential of more than 700m, the construction JV, led by Salini Impregilo, alongside Lane Construction and Clough, has proposed an inclined pressure tunnel in place of the vertical pressure shaft of the design-build contract design (Fig 1).
The project features a total of about 27km of precast segmentally lined waterways, a deep underground power house, and 430m of vertical shafts. When complete, the pumped storage scheme will link the existing reservoirs Tantangara at an elevation of 1,231m, and Talbingo at 546m. According to project owner, Snowy Hydro Ltd, the project takes hydro design and construction to a new level, involving several geological and hydromechanical challenges for the waterways.
Three TBMs of 11m diameter, two supplied by Herrenknecht and one by CREG, are preparing for delivery to site to start excavation later in 2020 with drill+blast of the powerhouse caverns to start once access is afforded (Fig 1). The CREG machine is the first Chinese TBM to be used in Australia.
From large water intake structures of up to 90m high in both reservoirs, the 9.8m i.d. x 17km long headrace will run from Tantangara to the 25m o.d. x 250m high headrace surge tank. In the contractor’s design alternative to the traditional vertical pressure shaft of the initial design, water will then flow in a 1.6km long x 25° inclined TBM excavated pressure shaft. This leads to three penstocks that bifurcate to feed six 340MW Francis pump-turbines in the 30m x 55m x 250m machine hall at about 800m below ground. A 20m x 50 x 200m transformer hall is located downstream of the machine hall (Fig 1). Three of the single-stage, reversible Francis pump-turbines will be conventional synchronous machines, while the other three will be variable-speed asynchronous.
On the downstream side of the machine hall, the six draft tubes combine into three collectors that meet at the bottom of the almost 200m-high tailrace surge tank, from which the 9.8m i.d. x 6km tailrace tunnel connects to the Talbingo intake structure. Maximum rock cover is almost 450m above the headrace and 800m above the tailrace.
There are an additional 11.5km of access and construction adits, as well as a 670m ventilation shaft. Primary access to the power station is provided by the main access and the ECTV, emergency egress, cable and ventilation tunnel, both of which are about 2.5km long.
The three TBMs will include two open mode and one dual-mode machine. The CREG machine will drive the tailrace and main access tunnel with the Herrenknecht machines excavating the headrace and the inclined pressure shaft and ECTV, emergency egress, cable and ventilation tunnel.
A AUS$55 million factory for production of the lining segments is being established for the project and is expected to start producing segments by the end of the year. Operated by Future Generation, it will manufacture more than 130,000 segments over the course of the project and will employ 125 people. A steel lining will also be installed at locations where leakage or confinement issues are identified.
With the access tunnels and adits and the underground powerhouse caverns excavated by drill+blast, the shafts will be excavated by blind shaft sinking.
The project faces challenging geological and hydrogeological conditions with the alignment passing through several highly-variable alpine formations with a wide range of rock types and geological structures. According to project information, excavation is likely to face frequently changing mixed ground conditions with regular transitions through different lithologies, faults and weak zones. High groundwater inflow may also impact construction and ground stability, requiring pre-excavation grouting in critical areas.
Although a geotechnical baseline has been defined, a more thorough understanding of the ground conditions will only become evident when construction begins. As a result, a contractual risk-sharing mechanism has been developed to allow for a balanced distribution of risk between the project owner and contractor, as well as for working out fair compensation for time and costs during actual construction.
Outlined in a technical paper presented at the World Tunnel Congress in Naples in 20191, this risk-sharing mechanism is based on the new Emerald Book prepared specifically by FIDIC and the ITA for underground excavation contracts and on the principal that risks should be managed by the party best able to do so. In this case, risks posed by the subsurface conditions will be carried by the project owner, while those related to production rates and performance are with the contractor. Underpinning this is a comprehensive GBR, Geotechnical Baseline Report, which forms part of the civil works contract and gives a baseline of ground types, ground behaviour types and tunnelling classes along the alignment. By defining the tunnelling classes, the GBR aims to accurately reflect the amount of effort required for construction under the agreed method.
At the start of its work on site, the project has had to manage the bushfires in the area of 2019/2020 and the Covid-19 coronavirus pandemic of early 2020. In a statement from Snowy Hydro Ltd, both were managed with “minimal disruption to operation and minimal impact on the project timetable”.
Although the bushfires came through the construction site, damage was limited “as a result of good preparation, including heat barrier fencing around the main compound” and contractors were able to return within weeks. Work has also continued through Covid-19 with “strict safety protocols in place and schedule and shipping adjustments made to minimise any impact on the overall project schedule”.
In addition to construction of the Polo Flat precast segment factory, exploratory works have been underway since March 2019 at the Lobs Hole construction site, including the construction of access roads and support infrastructure, including two bridges and temporary worker camps. During 2020, a range of earthworks have also been completed to prepare the portal for launch of the first TBM later this year to drive the main 2.5km power station access tunnel.
Future Generation subcontractor, GHD, is also currently conducting another site investigation programme at key locations to provide information for design of the underground power station and the inclined pressure shaft. This follows initial geotechnical drilling along the project alignment that began in 2017 and has so far collected more than 30,000m of cores over three years. One current borehole at the inclined pressure shaft site has reached a depth of more than 1,300m and is planned to extend more than 2,000m to the area of the penstock manifold.
|
|